ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Niranjan Gudibande, Kannan Iyer
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 674-683
Technical Paper | doi.org/10.13182/NT16-40
Articles are hosted by Taylor and Francis Online.
Radioactive materials are transported in hollow steel casks filled with lead. The lead in these casks can melt in an accidental fire during transportation leading to an increase in its volume. This plastically deforms the steel shell housing the lead. When the cask subsequently cools after the fire is extinguished, voids will form in the solidified lead. This work deals with the simulation of solidification with void formation in these transportation casks. In these simulations, one has to deal with solid-liquid and void-material interfaces. Solid-liquid movement during solidification is treated using a modified enthalpy method. The void that is formed in the solidified lead is assumed to be a vacuum. Consistent with this assumption, the boundary conditions of zero pressure and zero stress are imposed on the interface. The growth of the void is handled using the volume of fluid method. The methodology is first benchmarked by comparing the simulations with some experimental results available in the literature. Simulations are then performed for solidification in the transportation cask to study the effect of orientation on the void formation. A methodology is then developed to quantify the overall shielding effectiveness of the cask in terms of the total amount of radiation leaked.