ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
From renaissance to reality: Infrastructure for a global nuclear fuel cycle
Dale Klein
This article was adapted from the author’s speech during a plenary at the 21st International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2025), San Antonio, Texas, July 2025.
There has been a lot of discussion lately about reforming the Nuclear Regulatory Commission. But I want to be clear: When it comes to nuclear safety and security, there is no place for partisan politics. I support efforts to streamline regulatory processes, but the independence and integrity of the NRC must remain sacrosanct. If we are serious about expanding nuclear power and reclaiming our global leadership in nuclear technology, having a strong independent regulator is fundamental.
Right now, we’re on the edge of a global nuclear resurgence driven by rising demand from data centers, growing concerns about energy security, and the need to decarbonize industry.
N. Zweibaum, Z. Guo, J. C. Kendrick, P. F. Peterson
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 641-660
Technical Paper | doi.org/10.13182/NT16-15
Articles are hosted by Taylor and Francis Online.
The capability to validate integral transient response models is a key issue for licensing new reactor designs. The Compact Integral Effects Test (CIET 1.0) facility reproduces the thermal-hydraulic response of fluoride salt–cooled high-temperature reactors (FHRs) under forced- and natural-circulation operation. CIET 1.0 provides validating data to confirm the predicted performance of the direct reactor auxiliary cooling system, used for natural-circulation–driven decay heat removal in FHRs, under a set of reference licensing basis events. CIET 1.0 uses a simulant fluid, DOWTHERM A oil, which, at relatively low temperatures (50°C to 120°C), matches the Prandtl, Reynolds, and Grashof numbers of the major liquid salts simultaneously, at 50% geometric scale and heater power under 2% of prototypical conditions. CIET 1.0 has been designed, fabricated, filled with DOWTHERM A oil, and operated. Isothermal pressure drop tests were completed, with extensive pressure data collection to determine friction losses in the system. The project then entered a phase of heated tests, from parasitic heat loss tests to more complex feedback control tests and natural-circulation experiments, with the ultimate goal of validating best-estimate FHR models using RELAP5-3D and the novel one-dimensional FHR Advanced Natural Circulation Analysis (FANCY) code. This paper introduces the scaling strategy, design, and fabrication aspects, and start-up testing results from CIET 1.0. The CIET 1.0 model in RELAP5-3D and FANCY is detailed, and verification and validation efforts are presented. For various heat input levels and temperature boundary conditions, mass flow rates are compared between RELAP5-3D and FANCY results, analytical solutions when available, and experimental data, for both single and coupled natural-circulation loops. The study shows that both RELAP5-3D and FANCY provide excellent predictions of steady-state natural circulation in CIET 1.0, with mass flow rates within 13% of experimental data, suggesting that both codes are good candidates for design and licensing of FHR technology.