ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Takeshi Tsukada, Keiju Takahashi
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 229-243
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3951
Articles are hosted by Taylor and Francis Online.
In pyrometallugical reprocessing, the spent electrorefiner salt containing fission product (FP) elements may be purified by zeolite and reused. Batch-type absorption tests were conducted using one or two FP chlorides in a LiCl-KCl eutectic electrolyte in order to obtain absorption isotherms to fit to a Langmuir equation model. For the trivalent FP elements in the one-component or two-component systems, the FP-element uptake in the zeolite can be related to its concentration in the salt using a single Langmuir-type equation. In contrast, for monovalent and divalent FP elements, it was necessary to use three different Langmuir-type equations. Using these derived absorption equations and a stage concentration diagram, it was found that only a three-stage process is required to attain a decontamination factor of 50 for trivalent FP elements via a countercurrent multistage process.