ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Santee Cooper opts to reboot Summer reactor project
The board of directors of South Carolina’s state-owned utility Santee Cooper voted today to approve the proposal from Brookfield Asset Management to complete two new AP1000 power reactors at the V.C. Summer site in Jenkinsville, S.C.
Takeshi Tsukada, Keiju Takahashi
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 229-243
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3951
Articles are hosted by Taylor and Francis Online.
In pyrometallugical reprocessing, the spent electrorefiner salt containing fission product (FP) elements may be purified by zeolite and reused. Batch-type absorption tests were conducted using one or two FP chlorides in a LiCl-KCl eutectic electrolyte in order to obtain absorption isotherms to fit to a Langmuir equation model. For the trivalent FP elements in the one-component or two-component systems, the FP-element uptake in the zeolite can be related to its concentration in the salt using a single Langmuir-type equation. In contrast, for monovalent and divalent FP elements, it was necessary to use three different Langmuir-type equations. Using these derived absorption equations and a stage concentration diagram, it was found that only a three-stage process is required to attain a decontamination factor of 50 for trivalent FP elements via a countercurrent multistage process.