ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Eung-Ho Kim, Geun-Il Park, Yung-Zun Cho, Hee-Chul Yang
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 208-218
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3949
Articles are hosted by Taylor and Francis Online.
In this work, a new approach to remove fission products including decay heat elements was proposed. This study aims at providing a new way to minimize the amount of waste salt for a repository, while removing the high decay heat fission products [Cs, Sr, Ba, and Y including other rare earth (RE) elements] from the waste salts generated during a chloride pyroprocessing procedure. These elements were removed in consecutive order from the pyroprocessing units. First, Cs could be released in the form of an oxide gas during voloxidation of UO2 and captured by a fly-ash filter. Then, Sr was recovered in the form of carbonate precipitates from the LiCl waste salt generated during the course of an electoreduction process, by using Li2CO3. Finally, RE elements plus yttrium in the spent LiCl-KCl waste salt generated during electrorefining were removed in the form of oxides (or oxychlorides) by using an oxygen sparging method. It was confirmed that the removal yields of each element were ~90% for Cs at ~1473 K, >99% for Sr at a molar ratio of [Li2CO3/SrCl2 = 3], and >99% for the RE elements plus yttrium. Using these successes as a basis, a reference flow sheet for removing the high decay heat elements from pyroprocessing units is presented in this work. Also, a salt regeneration system to minimize the amount of waste salt is proposed in this study.