ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Stephen Priebe, Ken Bateman
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 199-207
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3948
Articles are hosted by Taylor and Francis Online.
The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all of the transuranic metals and the majority of the fission products, remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process, where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically fluidized dryer to ~0.1 wt% moisture and ground to a particle-size range of 45 to 250 m. The salt and zeolite are mixed in a V-mixer and heated to 500°C for ~18 h to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation. This paper is intended to provide the current status of the CWF process, focusing on the adaptation to pressureless consolidation. Discussions include impacts of particle size on final waste form and the pressureless consolidation cycle. A model is presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.