ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yun-Je Cho, Hyoung-Kyu Cho, Goon-Cherl Park
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 92-106
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3935
Articles are hosted by Taylor and Francis Online.
Seoul National University (SNU) proposed a new concept of a reactor cavity cooling system (RCCS), which is a critical safety feature in high-temperature gas-cooled reactors. To provide reasonable experimental data for the code assessment and evaluate the feasibility of the proposed system, performance and integrity were tested by separate-effects test apparatuses and a reduced-scale mockup facility named RCCS-SNU. Calculations were performed using the MARS-GCR code for the validation of its capability to simulate multidimensional behavior, natural convective heat transfer, radiative heat transfer, etc. This assessment showed that the MARS-GCR code reasonably predicts the characteristics of the radiative heat transfer in the cavity and the forced convective heat transfer through the air-cooling pipes. However, the study showed deviation in the simulation of heat transfers that occur inside the cavity and water pool, especially the thermal stratification phenomenon. As a result, it was concluded that applying the system code with coarse node, MARS-GCR had certain limitations in the simulation of local phenomena.