ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Fahri Aglar, Ali Tanrikut
Nuclear Technology | Volume 161 | Number 3 | March 2008 | Pages 286-298
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3927
Articles are hosted by Taylor and Francis Online.
Passive safety systems utilized in most of the advanced nuclear reactors make use of the condensation phenomenon to cope with the design-basis accidents. The inhibiting effect of noncondensable gases on condensation is an extremely important phenomenon, and several experimental research studies have been performed in recent years. Moreover, some theoretical investigations, including assessment of system analysis codes and in this connection modeling of new correlations with a reasonable accuracy, also have been carried out. The experimental work conducted at the Middle East Technical University (METU) was undertaken to investigate the inhibiting effect of noncondensable gas on the condensation phenomenon. The constituted database covers the wide range of system parameters such as the mixture Reynolds number and the air mass fraction. In this study, a new heat transfer correlation is proposed defining condensation phenomenon in the presence of air and is modeled using the METU database. Both the mixture Reynolds number and the condensate Reynolds number are taken into consideration to simulate the possible effect of interfacial waviness. The suppression effect of air, which is accumulated at the condensate-mixture interface, on heat flux is considered by inclusion of air mass fraction. The mean deviation with respect to the experimental data is determined to be 19.4%. Furthermore, the correlation was tested on the RELAP5 code, and the accuracy is determined to be 20%. The overall performance of the correlation, as coded in the RELAP5 code, is satisfactorily good with respect to experimental data for local heat flux, heat transfer coefficient, air mass fraction, and wall subcooling degree. The results obtained by utilizing the correlation yielded much better results compared with the original RELAP5 model, namely Colburn-Hougen.