ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Wang-Kee In, Tae-Hyun Chun, Chang-Hwan Shin, Dong-Seok Oh
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 69-79
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3914
Articles are hosted by Taylor and Francis Online.
A series of computational fluid dynamics (CFD) simulations has been conducted to analyze the heat transfer enhancement in a fully heated rod bundle with mixing-vane spacers. The predicted Nusselt numbers downstream of the split-vane spacer are compared with the available experimental measurements and with correlation. The CFD calculations at Re = 28000 and 42000 showed a lower heat transfer enhancement close to the space grid but a good agreement of the decay rate with the fully heated experimental data at ~6Dh downstream of the grid. The CFD simulations also showed a maximum enhancement of the heat transfer at 6 to 7Dh downstream of the split-vane spacer due to the multiple vortices predicted near the spacer. In addition, the present paper compares the thermal-hydraulic performance of two different mixing vane spacers, i.e., a split-vane spacer and a hybrid-vane spacer, based on CFD simulations at a pressurized water reactor's operating conditions. The split vane is predicted to have a higher overall heat transfer enhancement but a lower local heat transfer far downstream of the spacer where the minimum departure from nucleate boiling ratio is anticipated.