ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Tsuyoshi Okawa, Ehud Greenspan
Nuclear Technology | Volume 160 | Number 3 | December 2007 | Pages 257-278
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3898
Articles are hosted by Taylor and Francis Online.
The Encapsulated Nuclear Heat Source (ENHS) is a small lead-bismuth-cooled Generation IV reactor designed to have a once-for-life core with a nearly zero burnup reactivity swing and heat removal by natural circulation. All the ENHS cores designed so far have positive coolant void reactivity. This work searches for ENHS core designs having negative coolant void reactivity feedback and quantifies the penalty associated with a design for negative void reactivity. The approaches tried for turning the positive void coefficient negative are as follows: (a) enhancing the neutron leakage probability by reducing the fuel length, introducing neutron absorbers at the core boundary, using a gas-lift pump to introduce gas bubbles throughout the coolant in the core and fission gas plenum regions, and incorporating neutron-streaming channels in and adjacent to the core; (b) introducing into the core materials, such as Ca3N2, having enhanced absorption cross section at high energy; and (c) introducing into the core materials, such as CaH2, that will keep the neutron spectrum softer in the case of coolant voiding.The preferred negative void reactivity core design consists of 100-cm-long fuel rods, a 20-cm-thick B4C layer below the core, and a voided channel around the core radial boundary. The reactivity effect is negative when the coolant is voided from the entire core and even from only the central region of the core. In order to maintain a nearly zero burnup reactivity swing over at least 20 effective full-power years (EFPY), the core pitch-to-diameter ratio (P/D) has to be reduced from the reference value of 1.36 to 1.20. Correspondingly, for a given ENHS module dimensions the power level that can be removed by natural circulation from this core is ~75% of the reference core. Allowing a burnup reactivity swing of ~0.1% over 20 EFPY enables attaining a negative void reactivity core having P/D of 1.27 that can deliver ~93% of the P/D = 1.36 core power.