ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Supplier Showcase focus: Reducing cumulative radiological exposure
The American Nuclear Society is hosting a new Supplier Showcase webinar, “Reducing Cumulative Radiological Exposure with Advanced Source Term Removal Technologies,” on October 15 from 2:00 p.m. to 3:00 p.m. (EDT) on recent advancements in decontamination technology.
The webinar is free for all viewers and requires registration.
Brian Kelleher, Kieran Dolan, Mark Anderson, Kumar Sridharan
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 239-252
Technical Paper | doi.org/10.13182/NT15-140
Articles are hosted by Taylor and Francis Online.
A compact electrochemical probe has been used to measure the redox potential ranges of molten Li2BeF4, a candidate nuclear reactor coolant commonly referred to as flibe, via a dynamic beryllium reference electrode. This probe is capable of operating on a loop, but was used on a static system in salt at temperatures up to 600°C. The probe has been used to measure Li2BeF4 salt with observed redox potentials ranging from −1.792 ± 0.002 V to −0.465 ± 0.134 V, yielding individual errors as low as ± 4 mV, and weighted groupings with errors as low as ± 1 mV. The most reducing measurement taken with acceptable error was −0.962 ± 0.011 V. This probe can be adapted for use in many laboratory experiments using flibe and should be considered for any corrosion experiment supporting the development of a next-generation molten salt reactor.