American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 159 / Number 1

Advances in the Subcritical, Gas-Cooled, Fast Transmutation Reactor Concept

W. M. Stacey, K. A. Boakye, S. K. Brashear, A. C. Bryson, K. A. Burns, E. J. Bruch, S. A. Chandler, O. M. Chen, S. S. Chiu, J.-P. Floyd, C. J. Fong, S. P. Hamilton, P. B. Johnson, S. M. Jones, M. Kato, B. A. MacLaren, R. P. Manger, B. L. Meriwether, C. Mitra, K. R. Riggs, B. H. Shrader, J. C. Schulz, C. M. Sommer, T. S. Sumner, J. S. Wagner, J. B. Weathers, C. P. Wells, F. H. Willis, Z. W. Friis, J. I. Marquez-Danian, R. W. Johnson, C. de Oliveira, H. K. Park, D. W. Tedder

Nuclear Technology / Volume 159 / Number 1 / July 2007 / Pages 72-105

Technical Paper / Radioactive Waste Management and Disposal /

The design concept for a subcritical, He-cooled, fast reactor, fueled with transuranics (TRUs) from spent nuclear fuel in coated TRISO particles and driven by a tokamak D-T fusion neutron source, is being developed at Georgia Institute of Technology. The basic concept has been developed in two previous papers. This paper reports (a) advances in the design concept intended to enable achievement of "deep-burn" of the TRUs and passive safety, (b) investigations of the possibility of reprocessing the TRISO TRU fuel and of extending the strength of the fusion neutron source, (c) more extensive analyses to confirm and improve the design with respect to the adequacy of the fuel and nuclear performance, heat removal, tritium self-sufficiency and shielding, (d) more extensive analyses to confirm that the International Tokamak Experimental Reactor divertor, magnet and heating/current drive systems can be adapted, and (e) fuel cycle analyses to further investigate the contribution that such a reactor could make to closing the nuclear fuel cycle.

Questions or comments about the site? Contact the ANS Webmaster.