ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Bartlomiej Z. Wierzbicki, Steven P. Antal, Michael Z. Podowski
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 261-274
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3841
Articles are hosted by Taylor and Francis Online.
The ability to predict the shape of gas/liquid interface is important for various multiphase flow and heat transfer applications. Specific issues of interest to nuclear reactor thermal hydraulics include the evolution of the shape of bubbles attached to solid surfaces during nucleation, bubble/surface interactions in complex geometries, etc. The development of an innovative approach to model the time-dependent shape of gas/liquid interfaces is discussed. The proposed approach combines a modified level-set method with an advanced computational fluid dynamics code, NPHASE. The coupled numerical solver can be used to simulate the evolution of gas/liquid interfaces in two-phase flows for a variety of geometries and flow conditions.The novel aspects of the work include the development of direct coupling between the level-set algorithm and the finite-volume code NPHASE, the development of a novel mass conservation algorithm for the level-set method, the analysis of the influence of fluid physical properties on the predicted bubble flow conditions, and the use of a three-dimensional model to simulate gas bubble flow in channels of various geometries and orientations.