ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Emilio Baglietto, Hisashi Ninokata
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 237-248
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3839
Articles are hosted by Taylor and Francis Online.
An improved quadratic nonlinear eddy viscosity model (NLEVM) is introduced that respects the constraints of realizability for calculation of detailed coolant velocity and temperature distributions inside tight lattice fuel bundles. The model adopts an optimized low-Reynolds formulation based on direct numerical simulation data, combined with an enhanced nonlinear stress-strain relationship to correctly capture the anisotropy of the flow up to the solid wall. The capabilities of the model are first assessed on the prediction of fully developed flow inside triangular lattice bundles; it is shown how the ability to correctly reproduce the turbulent-driven secondary flow enables the model to accurately reproduce wall shear stress and velocity distributions inside the bundle. The model is applied to the evaluation of the thermal-hydraulic performances of novel fuel designs, discussing potential advantages and limitations of the newly proposed solutions.