ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Allen G. Croff, Steven L. Krahn
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 271-280
Technical Paper | doi.org/10.13182/NT15-46
Articles are hosted by Taylor and Francis Online.
This paper compares the radiotoxicity of thorium-based and uranium-based spent nuclear fuels and reprocessing wastes to inform evaluation of whether thorium-based fuels are significantly less radiotoxic than uranium-based fuels, as has been claimed at times in the technical literature. A consistent approach for calculating the radiotoxicity is established for four oxide fuel types in a pressurized water reactor: low-enrichment uranium, uranium with plutonium fissile material, thorium with 233U fissile material, and thorium with plutonium fissile material. The results of the calculations are presented to display the radiotoxicity trends and are analyzed to determine (a) what underlies the indicated radiotoxicity trends for decay times from 1 year to 20 million years and (b) factors that may have led to erroneous conclusions concerning the comparative radiotoxicity of thorium- and uranium-based fuels. The overall conclusion is that the ingestion radiotoxicity of thorium-based fuels containing 233U or plutonium fissile materials is similar to the radiotoxicity of uranium-based fuels containing 235U or plutonium fissile materials but that within this overall similarity there are significant differences in radiotoxicity in specific eras during decay.