American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 158 / Number 2

Performance of Planar High-Temperature Electrolysis Stacks for Hydrogen Production from Nuclear Energy

James E. O'Brien, Carl M. Stoots, J. Stephen Herring, Joseph J. Hartvigsen

Nuclear Technology / Volume 158 / Number 2 / May 2007 / Pages 118-131

Technical Paper / Nuclear Reactor Thermal Hydraulics /

An experimental program is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production in a temperature range from 800 to 900°C. This temperature range is consistent with the planned coolant outlet temperature range of advanced nuclear reactors. Results were obtained from two multiple-cell planar electrolysis stacks with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 m thick), nickel-cermet steam/hydrogen electrodes, and manganite oxygen-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed in a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates (1000 to 4000 standard cubic centimeters per minute), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Initial stack-average area-specific resistance values <1.5 cm2 were observed. Hydrogen production rates in excess of 200 normal liters per hour (NL/h) were demonstrated. Internal stack temperature measurements revealed a net cooling effect for operating voltages between the open-cell potential and the thermal neutral voltage. These temperature measurements agreed very favorably with computational fluid dynamics predictions. A continuous long-duration test was run for 1000 h with a mean hydrogen production rate of 177 NL/h. Some performance degradation was noted during the long test. Stack performance is shown to be dependent on inlet steam flow rate.

Questions or comments about the site? Contact the ANS Webmaster.