ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Duke Energy submits an ESP application to the NRC
Following up on an October announcement on plans to invest more heavily in nuclear power, Duke Energy closed out 2025 by submitting an early site permit application to the Nuclear Regulatory Commission. This ESP application is for a site near the Belews Creek Steam Station, a coal and natural gas plant in Stokes County, N.C., where Duke has been pursuing a new nuclear project for two years.
Ramamoorthy Karthikeyan, Alain Hébert
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 299-316
Technical Note | Fission Reactors | doi.org/10.13182/NT07-A3819
Articles are hosted by Taylor and Francis Online.
The effect of advanced resonance self-shielding models incorporated in the developmental version of the DRAGON code on estimation of reactivity coefficients of a typical CANDU-6 lattice is evaluated. The advanced self-shielding models are based on either equivalence in the dilution model or on a subgroup approach. Under equivalence in dilution models, the generalized Stamm'ler model was used with or without Riemann integration and Nordheim model. Among the subgroup approaches, the Ribon extended and the statistical self-shielding models were used. The Ribon extended self-shielding model uses mathematical probability tables, while the statistical self-shielding model uses physical probability tables. The analysis focused on four important transients, which include the fuel temperature coefficient, coolant void reactivity, pressure tube ingression, and calandria tube ingression. Four burnup stages for estimation of reactivity have been identified. To benchmark the results obtained using DRAGON, the results obtained were compared with those of MCNP5. These analyses indicated that, of all the self-shielding models, the resonance self-shielding model based on the subgroup approach using physical probability tables seems to perform well for all situations and can be recommended for CANDU-6 analyses using the code DRAGON.