ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
K. Mikityuk, P. Coddington, S. Pelloni, E. Bubelis, R. Chawla
Nuclear Technology | Volume 157 | Number 1 | January 2007 | Pages 18-36
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3799
Articles are hosted by Taylor and Francis Online.
A consistent analytical comparison has been made of the transient behavior of critical and subcritical fast-spectrum reactor systems, the basic core design assumed in each case being that of the 80-MW(thermal) mixed-oxide-fueled, Pb-Bi-cooled, Experimental Accelerator Driven System (XADS). The transient calculations were performed using the FAST code system developed at the Paul Scherrer Institute. The present study demonstrates a high level of self-protection of both the critical and subcritical systems over a wide range of postulated events, including transient overpower due to reactivity insertion, loss of flow, station blackout, loss of coolant, and core overcooling accidents. The relative advantages and shortcomings of the two system types, from the viewpoint of transient behavior, are discussed on the basis of the corresponding simulation results obtained.