ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Holtec to provide sheltered spent fuel storage in Taiwan
Holtec International announced that it has been awarded a turnkey supply contract by Taiwan Power Company (TPC) to establish indoor dry spent nuclear fuel storage facilities at both the closed Chinshan and Kuosheng nuclear power plant sites on the island nation.
Jae Jun Jeong, Dae Hyun Hwang, Bub Dong Chung
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 360-368
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT06-A3797
Articles are hosted by Taylor and Francis Online.
MARS is a best-estimate system analysis code that is based on the RELAP5/MOD3 and COBRA-TF codes. The COBRA-TF code was adapted as a three-dimensional thermal-hydraulic module in MARS. It uses a two-fluid, three-field model for two-phase flows and has a subchannel flow mixing model. The subchannel flow mixing model of the MARS three-dimensional module was assessed by using the ISPRA 16-rod bundle test and the GE 9-rod bundle test data. These tests represent typical pressurized water reactor and boiling water reactor core thermal-hydraulic conditions, respectively. Two interconnected subchannel tests that were performed under atmospheric pressure conditions were also used for the assessment. From the results of the assessments, a simple modification of the subchannel flow mixing model was suggested to take into account the effects of the system pressure on the void drift phenomena.