ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Doo-Hyun Lim
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 222-245
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3787
Articles are hosted by Taylor and Francis Online.
Migration of nuclides in a water-saturated high-level radioactive waste repository is analyzed by a newly developed two-dimensional numerical model incorporating a multiple-canister configuration and a nonuniform horizontal flow field of the host rock. The nonuniform flow field is established numerically by obtaining space-dependent groundwater flow velocity vectors using the finite element method. Transport of nuclides is simulated for the instantaneous-pulse-input source condition using the random-walk method. The current study for advection-dominant host rock shows quantitatively that the migration of nuclides in a repository adopting the disposal-pit vertical-emplacement concept is influenced not only by the canister configuration but also by flow boundary conditions, where groundwater flow is considered to be horizontal to the repository plane. The effects of applied hydraulic gradient direction h on nuclide migration become more significant as the number of canisters increases, while the effects are negligible for the single-canister configuration. As the number of canisters increases, the results of nuclide migration with respect to h range more widely and are bounded by two extreme cases. The h orthogonal to the orientation of the disposal tunnel is observed as most advantageous in terms of the isolation of the radionuclide. The single-canister configuration yields conservative results compared with the multiple-canister configuration.