ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Serkan Yilmaz, Kostadin Ivanov, Samuel Levine, Moussa Mahgerefteh
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 168-179
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3783
Articles are hosted by Taylor and Francis Online.
An efficient and practical genetic algorithm (GA) was developed to optimize the UO2/Gd2O3 fuel pin burnable poison (BP) configurations for fresh fuel assembly (FA) designs loaded in a pressurized water reactor core. The objective of the optimization was to minimize the residual binding due to residual Gd isotopes in the fuel at the end of cycle (EOC). The GA process for creating new BP designs in a coded form called genotypes is generated randomly resulting in a large number of invalid designs. Each new BP design or genotype created by the new GA must be decoded into its corresponding phenotype so that it can be evaluated with a coupled fuel lattice and core depletion calculation. It is essential that most of the invalid designs be eliminated before performing the precise coupled fuel lattice calculation because of the long CPU time that it takes for this calculation. The elimination was accomplished in the new GA by incorporating a beginning-of-cycle (BOC) Kinf filter. The BOC Kinf filter eliminated most of the invalid new genotypes by assigning a high negative penalty to all genotypes that have a BOC Kinf greater than some limit (1.065) for the reference TMI-1 FA. This filter eliminates the need for performing coupled lattice and core depletion calculations for these genotypes. It accelerated the solution process and allowed evaluation of all new genotypes within one day. In this way, the GA minimized the residual binding using an objective function, which maximized the EOC soluble boron (SB) concentration. In essence, the EOC SB or its equivalent EOC keff was maximized.