ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
L. Cantrel
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 11-28
Technical Paper | Reactor Safety | doi.org/10.13182/NT156-11
Articles are hosted by Taylor and Francis Online.
Iodine is a fission product of major importance because volatile species can be formed under severe nuclear reactor accident conditions and may potentially be released into the environment, leading to significant radiological consequences. The CAIMAN program was devoted to studying the radiochemistry of iodine in the reactor containment in the case of a severe accident occurring in a pressurized water reactor; this is a database of prime importance for the validation of codes, namely IODE, which is a module of the integral Accident Source Term Evaluation Code (ASTEC), jointly developed by the Institut de Radioprotection et de Sûreté Nucléaire and the Gesellschaft für Anlagen- und Reaktorsicherheit. These computations are generally used to predict the radiological consequences of such an accident.The experimental program, which ran from 1996 to 2002, concerned 18 experiments in a facility of intermediate scale (300 dm3), where labeled iodine, 131I, was used to perform gamma counting. The CAIMAN tests are here analyzed, and the main experimental observations and trends are described. For each experiment, IODE computations were performed and compared with experimental results in order to assess the possible weak points of the present modeling and to identify key parameters. Broadly speaking, the gaseous concentrations predicted are quite consistent with the experimental ones; the remaining gaps have been identified.