ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
L. Cantrel
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 11-28
Technical Paper | Reactor Safety | doi.org/10.13182/NT156-11
Articles are hosted by Taylor and Francis Online.
Iodine is a fission product of major importance because volatile species can be formed under severe nuclear reactor accident conditions and may potentially be released into the environment, leading to significant radiological consequences. The CAIMAN program was devoted to studying the radiochemistry of iodine in the reactor containment in the case of a severe accident occurring in a pressurized water reactor; this is a database of prime importance for the validation of codes, namely IODE, which is a module of the integral Accident Source Term Evaluation Code (ASTEC), jointly developed by the Institut de Radioprotection et de Sûreté Nucléaire and the Gesellschaft für Anlagen- und Reaktorsicherheit. These computations are generally used to predict the radiological consequences of such an accident.The experimental program, which ran from 1996 to 2002, concerned 18 experiments in a facility of intermediate scale (300 dm3), where labeled iodine, 131I, was used to perform gamma counting. The CAIMAN tests are here analyzed, and the main experimental observations and trends are described. For each experiment, IODE computations were performed and compared with experimental results in order to assess the possible weak points of the present modeling and to identify key parameters. Broadly speaking, the gaseous concentrations predicted are quite consistent with the experimental ones; the remaining gaps have been identified.