ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Jun Woo Bae, Hee Reyoung Kim
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 215-221
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT14-131
Articles are hosted by Taylor and Francis Online.
A design and performance test of an antiscattering X-ray grid that is based on photosensitive glass was conducted using MCNP simulation. The simulation was designed in three parts: source, scatterer, and grid. The source was a cone type with a single energy of 50 keV, and the scatterer was designed as a box with elemental composition and density the same as those of a human body. Three types of grid were tested: ideal, injection, and electroplating. The ideal-type grid was generally known and contained only a shielding wall, the injection-type grid had the shielding material injected into the glass, and the electroplating-type grid had the shielding material electroplated on the glass lattice skeleton. The ideal-type grid showed a scattered and primary photon ratio (SPR) of 0.106, and the nongrid type showed an SPR of 0.159. The injection-type grid had an SPR of 0.126, which corresponded to 119.3% of that of the ideal type. The electroplating-type grid had an SPR of 0.0964, which corresponded to 93.7% of that of the ideal type. It was understood that the electroplating-type grid showed the most effective reduction of the scattered photons in terms of SPR.