ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANFM 2025 is on the horizon
The first Advances in Nuclear Fuel Management (ANFM) conference in eight years is being held July 20–23, 2025, at the Sheraton Sand Key Resort in Clearwater Beach, Fla.
Christoffer Gottlieb, Vasily Arzhanov, Waclaw Gudowski, Ninos Garis
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 67-77
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3746
Articles are hosted by Taylor and Francis Online.
Support vector machines (SVMs), a relatively new paradigm in statistical learning theory, are studied for their potential to recognize transient behavior of detector signals corresponding to various accident events at nuclear power plants (NPPs). Transient classification is a major task for any computer-aided system for recognition of various malfunctions. The ability to identify the state of operation or events occurring at an NPP is crucial so that personnel can select adequate response actions. The Modular Accident Analysis Program, version 4 (MAAP4) is a program that can be used to model various normal and abnormal events in an NPP. This study uses MAAP signals describing various loss-of-coolant accidents in boiling water reactors. The simulated sensor readings corresponding to these events have been used to train and test SVM classifiers. SVM calculations have demonstrated that they can produce classifiers with good generalization ability for our data. This in turn indicates that SVMs show promise as classifiers for the learning problem of identifying transients.