ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
Yu-Chih Ko, Ching-Hui Wu, Min Lee
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 22-33
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3743
Articles are hosted by Taylor and Francis Online.
Probabilistic safety assessment (PSA) uses a systematic approach to estimate the reliability and risk of a nuclear power plant (NPP). Over the past few years, severe accident management guidance (SAMG), which delineates the mitigation actions of core melt accidents of an NPP, has been developed to support operators and staff in the technical support center in dealing with those misfortunes. It can be expected that the implementation of SAMG will lower the containment failure frequency and reduce the amount of radionuclides released to the environment during the accident. The plant studied is the Maanshan NPP of Taiwan Power Company, which employs a Westinghouse-designed three-loop pressurized water reactor (PWR) with large dry containment.The containment system event trees and containment phenomenological event trees of the Level-2 PSA model are modified to incorporate the new mitigation actions specified in SAMG. The HCR (Human Cognitive Reliability) and THERP (Technique for Human Error Rate Prediction) models are used to quantify the human error probability (HEP) of all the actions in the Level-2 PSA model. The MAAP4 (Module Accident Analysis Program version 4) code is used to perform thermohydraulic calculations to determine the demand time required in the HEP analysis.The results show that the frequency of most of the source term categories is reduced except the one in which both the reactor pressure vessel and containment are intact. The containment failure frequency is reduced by 14.8% after the implementation of SAMG. The frequency of containment early failure is reduced by 16.2%. Most of the reduction in the containment early failure frequency comes from the reduction in the induced steam generator tube rupture (STGR). The frequency of induced SGTR was reduced from 2.3 × 10-7/reactoryr to 1.0 × 10-8/reactoryr.