ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Luis E. Herranz, F. J. S. Velasco, Claudia L. Del Prá
Nuclear Technology | Volume 154 | Number 1 | April 2006 | Pages 85-94
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3719
Articles are hosted by Taylor and Francis Online.
Steam generator tube rupture sequences are identified as major contributors to the risk assessments of pressurized water reactors. Despite very low probability, they involve a direct pathway for radioactivity release into the environment. Nonetheless, fission products could be partially retained in the secondary side of the steam generator, even in the absence of water. This paper summarizes the main results of a bench-scale experimental program focused on the aerosol retention near the tube breach at the secondary side of a dry steam generator. The major variables investigated were the breach configuration (i.e., type, orientation, and location) and the gas mass flow rate. The results showed that near the breach, aerosol retention is low (<20%), and it generally decreases when the gas mass flow rate increases. Discussion of the experimental results suggested that certain phenomena, such as fragmentation and/or resuspension, as well as particle nature could have a large effect on the scenario studied, and they should be considered as potential issues and/or variables to be explored in future work.