ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Xu Cheng, Abdalla Batta, Nam-Il Tak
Nuclear Technology | Volume 154 | Number 1 | April 2006 | Pages 1-12
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3714
Articles are hosted by Taylor and Francis Online.
Experimental and numerical studies on the flow behavior in a prototypical configuration of spallation targets have been performed, with the main purpose being to support the target design and to assess the computational fluid dynamics application. The effects of flow direction, presence of a perforated plate, and turbulence models on the flow behavior are investigated. Good agreement is obtained between the experimental data and the numerical results, except for the case of downward flow without a perforated plate, where large flow recirculation occurs beneath the window. For the numerical simulation of the flow behavior in the complex target geometries investigated, the shear stress transport model does not show advantages over the k-[curly epsilon] model.