ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
K. L. Davis, D. L. Knudson, J. L. Rempe, J. C. Crepeau, S. Solstad
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 92-105
Technical Note | Materials for Nuclear Systems | doi.org/10.13182/NT14-60
Articles are hosted by Taylor and Francis Online.
New materials are being considered for fuel, cladding, and structures in next-generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high-temperature irradiation. To accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide these data, programs such as the Advanced Test Reactor (ATR) National Scientific Users Facility (NSUF) have funded researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) to develop several instrumented test rigs to obtain data in real time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in ATR. This technical note reports the status of INL efforts to develop and evaluate prototype test rigs that rely on linear variable differential transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower-flux materials testing reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in the length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements, such as elongation caused by thermal expansion and/or creep loading, and diameter changes associated with fuel and cladding swelling, pellet-cladding interaction, and crud buildup.