ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Alexander Agung, Danny Lathouwers, Tim H. J. J. van der Hagen, Hugo van Dam, Christopher C. Pain, Anthony J. H. Goddard, Matthew D. Eaton, Jefferson L. M. A. Gomes, Bryan Miles, Cassiano R. E. de Oliveira
Nuclear Technology | Volume 153 | Number 2 | February 2006 | Pages 117-131
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3694
Articles are hosted by Taylor and Francis Online.
This paper describes several modifications to the design of a fluidized bed nuclear reactor in order to improve its performance. The goal of these modifications is to achieve a higher power output, requiring an excess reactivity of 4% at maximum expansion of the bed. The modifications are also intended to obtain a larger safety margin when the reactor does not operate; a shutdown margin of 4% is required when the bed is in a packed state. The modifications include installing an embedded side absorber, changing the reactor cross-section area, and modifying the moderator-to-fuel ratio. The new design based on the modifications related to the aforementioned parameters achieves the desired shutdown margin and the excess reactivity.A model describing the coupling of neutronics and thermal/fluid dynamics is developed, and it is used to study the behavior of the reactor at steady conditions. The results show that the reactor can achieve a high output temperature of 1163 K and produce a thermal power of ~120 MW. Further, the results indicate that the power level of the reactor can be controlled easily by adjusting the flow of helium into the core without any further use of control rods or other active control mechanisms.