American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 153 / Number 2 / Pages 117-131

On an Improved Design of a Fluidized Bed Nuclear Reactor - I: Design Modifications and Steady-State Features

Alexander Agung, Danny Lathouwers, Tim H. J. J. van der Hagen, Hugo van Dam, Christopher C. Pain, Anthony J. H. Goddard, Matthew D. Eaton, Jefferson L. M. A. Gomes, Bryan Miles, Cassiano R. E. de Oliveira

Nuclear Technology / Volume 153 / Number 2 / February 2006 / Pages 117-131

Technical Paper / Fission Reactors

This paper describes several modifications to the design of a fluidized bed nuclear reactor in order to improve its performance. The goal of these modifications is to achieve a higher power output, requiring an excess reactivity of 4% at maximum expansion of the bed. The modifications are also intended to obtain a larger safety margin when the reactor does not operate; a shutdown margin of 4% is required when the bed is in a packed state. The modifications include installing an embedded side absorber, changing the reactor cross-section area, and modifying the moderator-to-fuel ratio. The new design based on the modifications related to the aforementioned parameters achieves the desired shutdown margin and the excess reactivity.

A model describing the coupling of neutronics and thermal/fluid dynamics is developed, and it is used to study the behavior of the reactor at steady conditions. The results show that the reactor can achieve a high output temperature of 1163 K and produce a thermal power of ~120 MW. Further, the results indicate that the power level of the reactor can be controlled easily by adjusting the flow of helium into the core without any further use of control rods or other active control mechanisms.

Questions or comments about the site? Contact the ANS Webmaster.