ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
K-State to offer NE bachelor's degree starting this fall
The Carl R. Ice College of Engineering at Kansas State University is adding nuclear engineering as its 15th bachelor of science degree program. Offered through the Alan Levin Department of Mechanical and Nuclear Engineering, the curriculum of 123 credit hours will be officially available starting in the fall this year.
Ian Porter, Travis W. Knight, Patrick Raynaud
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 174-182
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-100
Articles are hosted by Taylor and Francis Online.
Nuclear reactor systems codes have the ability to model the system response in an accident scenario based on known initial conditions (ICs) at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermomechanical fuel rod response models needed for best-estimate prediction of fuel rod failure. Alternatively, the reverse can be said about fuel performance codes; they can lack the ability to capture and model the thermal-hydraulic (T-H) influence of adjacent fuel rods and the rod's location in the reactor core. This work analyzes the limitations in using fuel performance codes to represent in-reactor conditions as determined by full-core T-H codes. The codes used in this analysis are the U.S. Nuclear Regulatory Commission's steady-state fuel performance code FRAPCON-3.5 and T-H code TRACE-V5P3. In order to assess the impact of the limitations found in the codes, several modifications were made to all of the codes to improve code-to-code consistency. The modifications to the fuel performance code include adding the ability to model gamma-ray heating and providing realistic core coolant conditions. The T-H code modifications include adding the ability to model the fuel with axially varying burnup-dependent fuel and cladding dimensional changes and corrosion characteristics. The fuel in a Westinghouse four-loop pressurized water reactor was modeled to assess the impacts these modifications have on fuel performance and ICs for transient analysis. The results of this study show that current modeling assumptions (and limitations) can yield both conservative and nonconservative results on several important licensing criteria.