ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Tetsuo Nishihara, Yoshiyuki Inagaki
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 100-106
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT06-A3692
Articles are hosted by Taylor and Francis Online.
Japan Atomic Energy Research Institute has performed the research and development of hydrogen production using the high-temperature engineering test reactor (HTTR). One of the key issues for the HTTR hydrogen production system is the development of control technology for stable operation. A thermal load absorber concept using a steam generator installed downstream of a reformer is proposed to mitigate a variation of helium temperature. Thermal-hydraulic analyses for the start-up operation and the suspension of the feed gas supply to the reformer are carried out. These results show that a large variation of the reformer outlet helium temperature takes place because of a change of the feed gas flow rate. However, the steam generator can mitigate the variation of the helium temperature. It is clarified that the HTTR can continue normal operation independently of the feed gas flow rate.