ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Young-Jong Chung, Hee-Kyung Kim, Hee-Cheol Kim, Sung-Quun Zee
Nuclear Technology | Volume 153 | Number 1 | January 2006 | Pages 41-52
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3688
Articles are hosted by Taylor and Francis Online.
The system-integrated modular advanced reactor (SMART) new phase (SMART-P) with a rated thermal power of 65.5 MW is currently being developed at the Korea Atomic Energy Research Institute. It is an innovative design to achieve a high degree of safety by adopting inherent safety-improving features and passive safety systems. Realistic and conservative calculations and a parameter study for a steam-line pipe break have been carried out by means of the TASS/SMR code. A set of transients for the whole system of SMART-P is investigated from the point of view of fuel integrity. The results of the analyses show that the most conservative initial conditions are thermal design flow, high system pressure, high coolant temperature, and high core power. It is also assumed that off-site power is unavailable and the steam section pipe guillotine break with the least reactive control rod assembly stuck out in the fully withdrawn position is a limiting case under the most moderator density reactivity condition. The SMART-P safety systems function properly and thus secure the reactor to a safe condition with respect to the safety parameters such as the critical heat flux ratio and the pressure. Natural circulation is well established in the primary and passive residual heat removal systems and is enough to ensure a stable plant shutdown condition after a reactor trips.