ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Gyeongho Nam, Junseok Park, Sangnyung Kim
Nuclear Technology | Volume 189 | Number 3 | March 2015 | Pages 278-293
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-121
Articles are hosted by Taylor and Francis Online.
The Fukushima Daiichi nuclear accident showed that severe events are real—not virtual—threats. In both pressurized water reactor and boiling water reactor nuclear plants, the containment is the last resort against radiation leakage, with the integrity of containment being directly linked to nuclear safety. To maintain the containment below Factored Load Category for 24 h and beyond after core damage, external cooling measures such as a gas vent system and an emergency containment spray backup system have been mandated. With these measures, it is difficult to completely satisfy all the requirements for proper cooling and minimized penetration and leakage while maximizing reliability and meeting the need for a passive design. Accomplishing all of these requires substantial repair and maintenance costs; thus, many difficulties can be anticipated with their implementation. This study proposes the installation of several multipod heat pipe assemblies; such an assembly includes an adiabatic region consisting of one large cylindrical structure penetrating the containment dome, a boiling region, and a condenser region consisting of many pipes that serve as the ultimate heat sink to discharge the decay heat energy from the containment with no radiation leak. Such installation will dramatically improve the nuclear safety in the event of a severe accident.