ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
J. L. Tripp, J. D. Law, T. E. Smith, V. J. Rutledge, W. F. Bauer, R. D. Ball, P. A. Hahn
Nuclear Technology | Volume 189 | Number 3 | March 2015 | Pages 301-311
Technical Paper | Radioisotopes | doi.org/10.13182/NT14-5
Articles are hosted by Taylor and Francis Online.
Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter sample volumes coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply microliter sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.