ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Diablo Canyon gets key state approval
Pacific Gas & Electric has announced that the California Coastal Commission, the state agency in charge of protecting California’s roughly 840 miles of coastline, unanimously voted to approve the Act Consistency Certification and Coastal Development Permit for Diablo Canyon, a critical step in the utility’s work to extend the life of the nuclear power plant.
Walter F. Sommer, Stuart A. Maloy, McIntyre R. Louthan, Gordon J. Willcutt, Phillip D. Ferguson, Michael R. James
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 303-313
Technical Paper | Accelerators | doi.org/10.13182/NT05-A3653
Articles are hosted by Taylor and Francis Online.
Tungsten rods, slip-clad with Type 304L stainless steel, performed successfully as a spallation neutron source target operating to a peak fluence of ~4 × 1021 p/cm2. The target was used as a neutron source during the Accelerator Production of Tritium (APT) materials irradiation program at the Los Alamos Neutron Science Center. Tungsten rods of 2.642-mm diameter were slip-fit in Type 304L stainless steel tubes that had an inner diameter of 2.667 mm. The radial gap was filled with helium at atmospheric pressure and room temperature. Los Alamos High Energy Transport (LAHET) calculations suggest a time-averaged peak power deposition in the W of 2.25 kW/cm3. Thermal-hydraulic calculations indicate that the peak centerline W temperature reached 271°C. The LAHET calculations were also used to predict neutron and proton fluxes and spectra for the complex geometry used in the irradiation program. Activation foil sets distributed throughout the experiment were used to determine target neutronics performance as a comparison to the LAHET calculations. Examination of the irradiated target assemblies revealed no significant surface degradation or corrosion on either the Type 304L or the W surfaces. However, it was clear that the irradiation changed material properties because post-proton-irradiation measurements on Type 304L test samples from the APT program demonstrated increases in the yield strength and decreases in the ductility and fracture toughness with increasing dose, and the wrought W rod samples became brittle. Fortunately, the slip-clad target design subjects the materials to very low stress.