ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
J. Wesley Hines, Brandon Rasmussen
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 281-288
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT05-A3650
Articles are hosted by Taylor and Francis Online.
Empirical modeling techniques have been applied to online process monitoring to detect equipment and instrumentation degradations. However, few applications provide prediction uncertainty estimates, which can provide a measure of confidence in decisions. This paper presents the development of analytical prediction interval estimation methods for three common nonlinear empirical modeling strategies: artificial neural networks, neural network partial least squares, and local polynomial regression. The techniques are applied to nuclear power plant operational data for sensor calibration monitoring, and the prediction intervals are verified via bootstrap simulation studies.