American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 151 / Number 2

Optimum Discharge Burnup and Cycle Length for PWRs

Jeffrey R. Secker, Baard J. Johansen, David L. Stucker, Odelli Ozer, Kostadin Ivanov, Serkan Yilmaz, E. H. Young

Nuclear Technology / Volume 151 / Number 2 / August 2005 / Pages 109-119

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization /

This paper discusses the results of a pressurized water reactor fuel management study determining the optimum discharge burnup and cycle length. A comprehensive study was performed considering 12-, 18-, and 24-month fuel cycles over a wide range of discharge burnups. A neutronic study was performed followed by an economic evaluation. The first phase of the study limited the fuel enrichments used in the study to <5 wt% 235U consistent with constraints today. The second phase extended the range of discharge burnups for 18-month cycles by using fuel enriched in excess of 5 wt%. The neutronic study used state-of-the-art reactor physics methods to accurately determine enrichment requirements. Energy requirements were consistent with today's high capacity factors (>98%) and short (15-day) refueling outages. The economic evaluation method considers various component costs including uranium, conversion, enrichment, fabrication and spent-fuel storage costs as well as the effect of discounting of the revenue stream. The resulting fuel cycle costs as a function of cycle length and discharge burnup are presented and discussed. Fuel costs decline with increasing discharge burnup for all cycle lengths up to the maximum discharge burnup considered. The choice of optimum cycle length depends on assumptions for outage costs.

Questions or comments about the site? Contact the ANS Webmaster.