ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Duke Energy submits an ESP application to the NRC
Following up on an October announcement on plans to invest more heavily in nuclear power, Duke Energy closed out 2025 by submitting an early site permit application to the Nuclear Regulatory Commission. This ESP application is for a site near the Belews Creek Steam Station, a coal and natural gas plant in Stokes County, N.C., where Duke has been pursuing a new nuclear project for two years.
M. T. Andrews, J. T. Goorley, E. C. Corcoran, D. G. Kelly
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 235-242
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-72
Articles are hosted by Taylor and Francis Online.
Study of the magnitude and temporal behavior of delayed neutrons (DNs) enables the identification of fissile isotopes and a determination of their relative quantities. Thus, the ability to model accurately these neutrons and the methods of their detection is of relevance to nuclear forensics and counterterrorism. The capability of MCNP6 to model these emissions was examined and compared to measurements of the DNs produced by 233U, 235U, and 239Pu after neutron-induced fission. Fissile samples were irradiated in a SLOWPOKE-2 research reactor for 60 s and were then conveyed via pneumatic tubing to an array of six 3He detectors embedded in a paraffin moderator. Several MCNP6 input files were created to reproduce irradiation conditions, temporal DN emission, and the detection arrangement. Nuclear reactions and other effects within the 3He detectors were reproduced by MCNP6, and detection efficiencies of this modeled arrangement determined by MCNP6 were in agreement with experimental measurements. Finally, the library and model DN emission options in the MCNP6v1 release were evaluated and compared to the measured magnitudes and temporal behavior of 233U, 235U, and 239Pu. Significant discrepancies observed between the DN model option and measurements for count times >100 s are discussed.