ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
F. Baque
Nuclear Technology | Volume 150 | Number 1 | April 2005 | Pages 67-78
Technical Paper | Sodium Technology | doi.org/10.13182/NT05-A3606
Articles are hosted by Taylor and Francis Online.
In-service monitoring of nuclear plants is indispensable for both the Operator and the Regulator. The notion of in-service monitoring ranges from the continuous monitoring of the reactor in operation to the thorough in-service reactor inspection during programmed shutdowns. However, the highly specific environment found in French liquid metal fast reactor plants - Phénix and Superphénix - makes monitoring and inspection complicated because of the use of a sodium coolant that is hot, opaque, and difficult to drain.The Commissariat à l'Energie Atomique, in collaboration with its traditional French partners, Electricité de France utilities and FRAMATOME/Novatome Engineering, decided to conduct a 6-yr research and development program (1994-2000) to explore this problem vis-à-vis Superphénix, as well as the possibilities of intervening within the reactor block or on components in a sodium environment. Furthermore, the safety reevaluation of Phénix, conducted between 1994 and 2003, represented an excellent "test bench" during which the limits of inspection processes - applied to an integrated reactor concept - were surpassed using techniques such as fuel subassembly head scanning, ultrasonic examination of the core support, and visual inspection of the cover-gas plenum following a partial sodium draining. Repair techniques were investigated for cleaning of sodium wet structure surfaces, cutting of damaged parts, and welding in sodium aerosol atmosphere. Both conventional and laser processes were tested.