ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Standard Nuclear executes OTA with DOE
Reactor-agnostic TRISO fuel producer Standard Nuclear recently announced that it has executed an other transaction agreement (OTA) with the Department of Energy. As one of the five companies involved in the DOE’s Fuel Line Pilot Program, its entrance into this deal marks a milestone in the public-private effort to bring advanced fuel production on line in support of the DOE’s concurrently running Reactor Pilot Program.
C. L. Stewart, W. M. Stacey
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 1-14
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-102
Articles are hosted by Taylor and Francis Online.
The subcritical advanced burner reactor (SABR) concept, which combines IFR-PRISM fast reactor technology and the ITER tokamak fusion physics and technology in a burner reactor for the transmutation of transuranics, has been adapted for a subcritical advanced breeder reactor (SABrR) that produces plutonium. It is found that basically the same fission and fusion technology, geometry, and major parameters as used in SABR can be used to achieve a significant fissile production rate (fissile breeding ratio ≈ 1.3) while maintaining tritium self-sufficiency (tritium breeding ratio >1.15).