ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mie Azuma, Atsushi Taniguchi, Akitoshi Hotta, Takeshi Ohta
Nuclear Technology | Volume 149 | Number 3 | March 2005 | Pages 243-252
Technical Paper | Fission Reactors | doi.org/10.13182/NT05-A3593
Articles are hosted by Taylor and Francis Online.
The integrity of the reactor pressure vessel (RPV) head and reactor internals was assessed by means of fluid and fluid-structural coupled analyses to evaluate the water hammer phenomenon arising from postulated high burnup fuel failure under reactivity initiated accident (RIA) conditions. The fluid viscosity effect on the water column burst as well as the complex three-dimensional flow paths caused by a core shroud and standpipes were considered in this study. It is shown that fluid viscosity becomes an influential factor to dissipate impacting kinetic energy. Integrity of the RPV head and the shroud head was ensured with a sufficient level of margin even under these excessively conservative RIA conditions.