American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 185 / Number 3

Design Studies of a Low Sodium Void Reactivity Core Able to Accommodate Degraded TRU Fuel

Katsuyuki Kawashima, Kazuteru Sugino, Shigeo Ohki, and Tsutomu Okubo

Nuclear Technology / Volume 185 / Number 3 / March 2014 / Pages 270-280

Technical Paper / Fission Reactors / dx.doi.org/10.13182/NT13-38

As part of the Fast Reactor Cycle Technology Development (FaCT) Project, JSFR (Japan Sodium-Cooled Fast Reactor) core design efforts have been made to cope with the transuranic (TRU) fuel compositions expected during the light water reactor (LWR)–to–fast breeder reactor transition period, during which various kinds of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and their recycling method. The sodium void reactivity, which is one of the major core safety parameters, is considerably influenced by TRU fuel compositions. The criteria assigned to the JSFR core include a void reactivity effect limited to ∼6 $; therefore, designing a core with reduced sodium void reactivity will offer a greater margin for the core to host TRU fuel. To this end, a new core concept called BUMPY is proposed. This homogeneous core exhibits a low sodium void reactivity, due to partial-length fuels with an upper sodium plenum interspersed within the core, among other standard fuel assemblies. This core configuration enhances the upward and lateral neutron leakage from the core fuel region toward the sodium plenum when voiding to reduce void reactivity. The BUMPY core is applied to the 750-MW(electric) JSFR core design. The core can meet the design target by adjusting the loading fraction of the partial-length fuels and the height of the step in fuel lengths. The calculated void reactivity of the selected BUMPY core is 2.5 $ (25% loading fraction, 30-cm step height), which is considerably reduced from the 5.3 $ value of the reference core. This allows the BUMPY core to accommodate 5% to 9% more minor actinides in the core compared to the reference core.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement