American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 185 / Number 3

A Dual System for Monitoring the Positions of Multiple Radioactive Tracer Pebbles in Scaled Pebble Bed Reactors

Zhijian Wang, Kyoung O. Lee, Robin P. Gardner

Nuclear Technology / Volume 185 / Number 3 / March 2014 / Pages 259-269

Technical Paper / Fission Reactors /

A dual measurement system for monitoring the simultaneous positions of multiple radioactive tracer pebbles in scaled pebble bed reactors (PBRs) has been developed and benchmarked to the prototype stage. The first system (the collimated system) is an updated version of a previously developed system that is now a completely automatic system that uses three collimated directionally variable NaI detectors that are programed to continuously search for a maximum counting rate from a single radioactive pebble. This system can be used by itself when a single radioactive tracer pebble is of interest and the pebble is relatively slow moving. In the present case, its primary use is to provide an independent measurement of the position of a stationary tracer pebble that is used to provide a point for calibration of the second system. The second system (the uncollimated system) is a modified version of a multiple uncollimated NaI detector system commonly called CARPT. The modified version involves those changes necessary to allow for use of the entire gamma-ray spectra for the inverse problem instead of only the gamma-ray full energy peaks. This allows one to use multiple radioisotopes each in a different tracer pebble so that up to ten individual tracer pebbles can be followed simultaneously with the best possible accuracy. The inverse problem is treated with the Monte Carlo library least-squares approach in which Monte Carlo–generated library spectra for each radioisotope are made available for a complete range of reference positions within the scaled PBR. Then, any unknown total gamma-ray spectra can be analyzed in an iterative fashion with the radioisotope library spectra to yield the position of all the radioisotope tracer pebbles. The scaled PBR used was a 30-cm-high and 30-cm-diam circular cylindrical section on the top and a cone with a 25-deg angle on the bottom. The pebbles are 1.2-cm glass marbles. Results have been obtained with both single tracer radioisotope marbles and multiple tracer radioisotope marbles, simultaneously.

Questions or comments about the site? Contact the ANS Webmaster.