ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Benjamin A. Lindley, N. Zara Zainuddin, Paolo Ferroni, Andrew Hall, Fausto Franceschini, Geoffrey T. Parks
Nuclear Technology | Volume 185 | Number 2 | February 2014 | Pages 127-146
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-53
Articles are hosted by Taylor and Francis Online.
Multiple recycle of transuranic (TRU) isotopes in thermal reactors results in degradation of the plutonium (Pu) fissile quality with buildup of higher actinides (e.g., Am, Cm, Cf), some of which are thermal absorbers. These phenomena lead to increasing amounts of Pu feed being required to sustain criticality and accordingly larger TRU content in the multirecycled fuel inventory, ultimately resulting in a positive moderator temperature coefficient (MTC) and void reactivity coefficient. Because of the favorable impact fostered by use of thorium (Th) on these coefficients, the feasibility of Th-TRU multiple recycle in reduced-moderation pressurized water reactors (PWRs) and boiling water reactors (BWRs) has been investigated. In this paper, Part I of two companion papers, the analysis is limited to a single assembly, with full-core models presented in Part II. Spatial separation of TRU from bred uranium is found to greatly improve neutronic performance. A large reduction in moderation is necessary to allow full actinide recycle. This will pose thermal-hydraulic challenges, which are discussed in Part II. In addition, the harder neutron spectrum resulting from the reduced moderation also reduces the control rod worth, while there is a neutronic incentive to use increased mechanical shim to maintain a negative MTC. It may therefore be desirable to increase the number of rod cluster control assemblies. Superior burnup is achievable in a reduced-moderation BWR as a larger reduction in moderation is feasible, although the incineration rate is reduced relative to a PWR due to a higher conversion ratio.