ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Michael T. Itamura, Nicholas D. Francis, Jr., Stephen W. Webb, Darryl L. James
Nuclear Technology | Volume 148 | Number 2 | November 2004 | Pages 115-124
Technical Paper | High-Level Radioactive Waste Disposal | doi.org/10.13182/NT04-A3552
Articles are hosted by Taylor and Francis Online.
Yucca Mountain has been designated as the nation's high-level radioactive waste repository, and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. The temperature and humidity inside the emplacement drift will affect the degradation rate of the waste packages and waste forms as well as the quantity of water available to transport dissolved radionuclides out of the waste canister. Thermal radiation and turbulent natural convection are the main modes of heat transfer inside the drift. This paper presents the result of three-dimensional computational fluid dynamics simulations of a segment of emplacement drift. The model contained the three main types of waste packages and was run at the time that the peak waste package temperatures are expected. Results show that thermal radiation is the dominant mode of heat transfer inside the drift. Natural convection affects the variation in surface temperature on the hot waste packages and can account for a large fraction of the heat transfer for the colder waste packages. The paper also presents the sensitivity of model results to uncertainties in several input parameters. The sensitivity study shows that the uncertainty in peak waste package temperatures due to in-drift parameters is <3°C.