ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Leo K. Sepold, Alexei Miassoedov, Gerhard Schanz, Ulrike Stegmaier, Martin Steinbrück, Juri Stuckert, Christoph Homann
Nuclear Technology | Volume 147 | Number 2 | August 2004 | Pages 202-215
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3526
Articles are hosted by Taylor and Francis Online.
The QUENCH bundle experiments together with pertinent separate-effects tests are run to investigate the hydrogen source term resulting from water injection into an uncovered core of a light water reactor for emergency cooling. The test bundle consists of 21 fuel rod simulators, 20 of which are heated electrically over a length of 1024 mm. The center rod is either an unheated fuel rod simulator or a control rod containing B4C absorber material. The Zircaloy-4 rod cladding and the grid spacers are identical to those used in pressurized water reactors, whereas the fuel is represented by ZrO2 pellets. After transient heating to 2000 K and above, cooling of the test bundle is accomplished by injecting water or steam into the bottom of the test section. Hydrogen generation during cooling was found either to stop almost immediately or to increase for a certain time. Increased hydrogen generation was found in those tests in which local melting occurred, probably as a result of oxidation of the melt containing zirconium. Hydrogen release in the flooding/cooling phase of all QUENCH experiments performed so far seems to be insensitive to the coolant (water or steam) under similar test conditions.