ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Paul A. Demkowicz, James L. Jerden, Jr., James C. Cunnane, Noriko Shibuya, Ronald Baney, James Tulenko
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 157-170
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT04-A3522
Articles are hosted by Taylor and Francis Online.
The aqueous dissolution of irradiated and unirradiated uranium-thorium dioxide, (U,Th)O2, fuel pellets in Yucca Mountain well water has been investigated. Whole and crushed pellets were reacted at 25 and 90°C for periods of up to 195 days. The fuel dissolution was measured by analyzing the concentrations of soluble uranium, thorium, and important fission products (137Cs, 99Tc, 237Np, 239Pu, 240Pu, and 241Am) in the well water. The surface-area-normalized fractional uranium release rates for unirradiated crushed uranium dioxide (UO2) pellets were 10 to 40 times higher than the values for (U,Th)O2 fuel. Similarly, the dissolution rates of irradiated (U,Th)O2 pellets with compositions ranging from 2.0 to 5.2% UO2 were at least two orders of magnitude lower than reported literature values for pure UO2. These results demonstrate an advantage of (U,Th)O2 over UO2 in terms of matrix dissolution in groundwater and suggest that (U,Th)O2 fuel is a more stable long-term waste form than conventional UO2 fuel.