ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Edward J. Lahoda
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 102-112
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT04-A3517
Articles are hosted by Taylor and Francis Online.
The results of a 2-yr effort to determine the capability of U.S. fuel manufacturers to economically manufacture thorium-uranium dioxide (ThO2-UO2) fuel in plants that have previously only manufactured UO2 fuel with <5% 235U enrichment are presented. It was determined that there were no fundamental obstacles to converting the current plants that manufacture a uranium-oxide-only fuel to a mixed thorium-uranium dioxide fuel. However, the differential costs for manufacturing a 75% ThO2-25% UO2 fuel, with the uranium enriched with 20% 235U, as compared to a 100% UO2 fuel, was between $269 and $291/kg of metal oxide fuel, depending on the manufacturing method used to convert the uranium and thorium feeds to the dioxide powders. More than 90% of this cost was associated with the increased cost of the uranium feed and the addition of the thorium feed. If a 70% ThO2-30% UO2 fuel were used, the differential costs would increase to between $519 and $542/kg of metal oxide fuel, of which >95% is associated with the uranium and thorium feed materials.