American Nuclear Society

Home / Publications / Journals / Nuclear Technology / Volume 147 / Number 1

Thorium-Based Transmuter Fuels for Light Water Reactors

J. Stephen Herring, Philip E. MacDonald, Kevan D. Weaver

Nuclear Technology / Volume 147 / Number 1 / July 2004 / Pages 84-101

Technical Paper / Thoria-Urania NERI /

A light water reactor (LWR) fuel cycle is proposed where the reactor core mainly consists of standard uranium-dioxide (UO2) fuel rods with typical 235U enrichment, along with thoria-urania (ThO2-UO2) or yttria-stablized zirconia fertile-free fuel rods containing the plutonium and minor actinides typical of 30-yr old UO2 fuel in 1/9 to 1/3 of the positions. The goals of this mono-recycling strategy or "twice through fuel cycle" are to transmute the great majority of the long lived actinides in existing LWRs and to discharge a fuel form that is a very robust waste form and whose isotopic content is very proliferation resistant. The incorporation of plutonium into a ThO2 or yttria-stablized zirconia fertile-free matrix results in the consumption of already-separated plutonium without breeding significant additional 239Pu. The minor actinides (i.e., neptunium, americium, curium, berkelium, californium, etc.) are also included in the ThO2 or fertile-free transmuter fuel rods to further reduce the overall long-term radiotoxicity of the fuel cycle. Our analyses have shown that thorium-based or fertile-free fuels can reduce the amount of 239Pu needing further transmutation or going to a repository by ~90%. Also, thorium-based fuels produce a mixture of plutonium isotopes high in 238Pu. Because of the high decay heat and spontaneous neutron generation of 238Pu, this isotope provides intrinsic proliferation resistance.

Questions or comments about the site? Contact the ANS Webmaster.