American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 147 / Number 1

Use of Thorium for Transmutation of Plutonium and Minor Actinides in PWRs

Eugene Shwageraus, Pavel Hejzlar, Mujid S. Kazimi

Nuclear Technology / Volume 147 / Number 1 / July 2004 / Pages 53-68

Technical Paper / Thoria-Urania NERI

An assessment is made of the potential for Th-based fuel to minimize Pu and minor actinide (MA) production in pressurized water reactors (PWRs). Destruction rates and residual amounts of Pu and MA in the fuel used for transmutation are examined. In particular, sensitivity of these two parameters to the fuel lattice hydrogen to heavy metal (H/HM) ratio and to the fuel composition was systematically investigated. All burnup calculations were performed using CASMO4, the fuel assembly burnup code. The results indicate that up to 1000 kg of reactor-grade Pu can be burned in Th-based fuel assemblies per gigawatt (electric) year. Up to 75% of initial Pu can be destroyed per passage through reactor core. Addition of MA to the fuel mixture degrades the burning efficiency. The theoretically achievable limit for total transuranium (TRU) destruction per passage through the core is 50%. Efficient MA and Pu destruction in Th-based fuel generally requires a higher degree of neutron moderation and, therefore, higher fuel lattice H/HM ratio than typically used in the current generation of PWRs. Reactivity coefficients evaluation demonstrated the feasibility of designing a Th-Pu-MA fueled core with negative Doppler and moderator temperature coefficients. Introduction of TRU-containing fuels to a PWR core inevitably leads to lower control material worths and smaller delayed-neutron yields than with conventional UO2 cores. Therefore, a major challenge associated with the introduction of Th-TRU fuels to PWRs will be the design of the whole core and reactor control features to ensure safe reactor operation.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement