The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO2-UO2) fuel and compare those designs with more conventional UO2 designs.

The fuel cycle analyses indicate that ThO2-UO2 fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO2 fuel cycles, and the burnable poison requirements are less.

However, the additional costs associated with the use of homogeneous ThO2-UO2 fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO2 fuel used in light water reactors.