ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Mehmet Saglam, Joe J. Sapyta, Stewart W. Spetz, Lawrence A. Hassler
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 8-19
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT03-29
Articles are hosted by Taylor and Francis Online.
The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO2-UO2) fuel and compare those designs with more conventional UO2 designs.The fuel cycle analyses indicate that ThO2-UO2 fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO2 fuel cycles, and the burnable poison requirements are less.However, the additional costs associated with the use of homogeneous ThO2-UO2 fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO2 fuel used in light water reactors.